Regular orbits of nilpotent subgroups of solvable linear groups
نویسندگان
چکیده
منابع مشابه
Separability of Solvable Subgroups in Linear Groups
Let Γ be a finitely generated linear group over a field of characteristic 0. Suppose that every solvable subgroup of Γ is polycyclic. Then any solvable subgroup of Γ is separable. This conclusion is false without the hypothesis that every solvable subgroup of Γ is polycyclic.
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملComplex Orbits of Solvable Groups
The following structure theorems are proved: An orbit of a real solvable Lie group in projective space that is a complex submanifold is isomorphic to C x (C*)m x Í2 , where Í2 is an open orbit of a real solvable Lie group in a projective rational variety. Also, any homogeneous space of a complex Lie group that is isomorphic to C" can be realized as an orbit in some projective space. As a conseq...
متن کاملGeometry of Nilpotent and Solvable Groups
(Answer 1) By defining a Cayley graph. Let S be a finite generating set for G , such that S−1 = {s−1 | s ∈ S} = S and 1 ̸∈ S . NB From now on we always assume that generating sets of the group that we consider satisfy the above. The Cayley graph Cayley(G,S) of G with respect to the generating set S is a non-oriented graph defined as follows: • its set of vertices is G ; • every pair of elements ...
متن کاملA-Generated Subgroups of A-Solvable Groups
In the discussion of A-solvable groups, the question arises if a torsion-free abelian group A of finite rank is flat as a module over its endomorphism ring if every A-generated subgroup of a torsion-free A-solvable group is A-solvable. This paper gives a negative answer by constructing a torsion-free group of rank 3 for which all A-generated torsion-free groups are A-solvable, although A is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2010.09.024